Traitement Automatique du Langage Naturel (TALN) - 2

Résumé

Ce document approfondit le **Traitement Automatique du Langage Naturel (TALN)** en se concentrant sur les **modèles neuronaux avancés** et leurs **applications**, notamment en **traduction automatique** et en **génération de texte**. Il explore les **réseaux de neurones récurrents (RNN)** et leurs limitations, notamment le **problème du gradient évanescent**, qui nuit à la mémorisation des longues séquences. Pour y remédier, les **Long Short-Term Memory (LSTM)** ont été développés, permettant de mieux capturer les dépendances à long terme.

L'architecture **Encodeur-Décodeur** est introduite pour améliorer la **traduction automatique**, mais elle souffre d'une perte d'information dans les phrases longues. Cela a conduit au développement du **mécanisme d'attention**, qui permet de pondérer différemment chaque mot en fonction de son importance dans le contexte global. Ce principe est largement utilisé dans les modèles modernes comme **Google Translate**.

Enfin, le document aborde la révolution des **Transformers**, qui, contrairement aux RNN et LSTM, permettent un **traitement parallèle** des données, accélérant ainsi l'apprentissage et améliorant la qualité des modèles de **traduction et de génération de texte**. Ces avancées sont à la base des modèles de langage actuels comme **BERT** et **GPT**.

Terme	Définition
TALN (Traitement Automatique du Langage Naturel)	Discipline permettant aux machines de comprendre et manipuler le langage humain.
NLP (Natural Language Processing)	Terme anglais équivalent au TALN.
RNN (Recurrent Neural Network)	Réseau neuronal conçu pour traiter les données séquentielles mais limité par le gradient évanescent.
LSTM (Long Short-Term Memory)	Variante des RNN qui améliore la gestion des dépendances longues dans les séquences.
Encodeur-Décodeur	Architecture utilisée en traduction automatique où une phrase est d'abord codée, puis décodée dans une autre langue.
Mécanisme d'attention	Technique qui pondère différemment les mots d'une phrase pour mieux comprendre leur importance contextuelle.
Transformers	Architecture qui remplace les RNN/LSTM en permettant un traitement parallèle plus rapide et efficace.
Google Translate	Système de traduction automatique utilisant un modèle Encodeur- Décodeur avec mécanisme d'attention.
Gradient évanescent	Problème des RNN où les informations des débuts de séquence sont perdues à mesure que la phrase progresse.
Softmax	Fonction utilisée pour convertir des scores en probabilités dans un modèle de classification.